Affiliation:
1. Department of Mathematics, Shanghai Normal University, 100 Guilin Rd, Xuhui District, Shanghai 200233, P. R. China
2. 632 Central Academic Building, University of Alberta, Edmonton, AB T6G 2G1, Canada
Abstract
We construct three families of vertex algebras along with their modules from appropriate vertex Lie algebras, using the constructions in [Vertex Lie algebra, vertex Poisson algebras and vertex algebras, in Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory[Formula: see text] Proceedings of an International Conference at University of Virginia[Formula: see text] May 2000, in Contemporary Mathematics, Vol. 297 (American Mathematical Society, 2002), pp. 69–96] by Dong, Li and Mason. These vertex algebras are strongly graded vertex algebras introduced in [Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, in Conformal Field Theories and Tensor Categories[Formula: see text] Proceedings of a Workshop Held at Beijing International Center for Mathematics Research, eds. C. Bai, J. Fuchs, Y.-Z. Huang, L. Kong, I. Runkel and C. Schweigert, Mathematical Lectures from Beijing University, Vol. 2 (Springer, New York, 2014), pp. 169–248] by Huang, Lepowsky and Zhang in their logarithmic tensor category theory and can also be realized as vertex algebras associated to certain well-known infinite dimensional Lie algebras. We classify irreducible [Formula: see text]-gradable weak modules for these vertex algebras by determining their Zhu’s algebras. We find examples of strongly graded generalized modules for these vertex algebras that satisfy the [Formula: see text]-cofiniteness condition introduced in [Differential equations and logarithmic intertwining operators for strongly graded vertex algebra, Comm. Contemp. Math. 19(2) (2017) 1650009] by the second author. In particular, by a result of the second author [Differential equations and logarithmic intertwining operators for strongly graded vertex algebra, Comm. Contemp. Math. 19(2) (2017) 1650009, 26 pp.], the convergence and extension property for products and iterates of logarithmic intertwining operators in [Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, VII: Convergence and extension properties and applications to expansion for intertwining maps, preprint (2011); arXiv:1110.1929 ] among such strongly graded generalized modules is verified.
Funder
Shanghai Natural Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics