A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems

Author:

Conti Sergio1,Focardi Matteo2,Iurlano Flaviana3

Affiliation:

1. Institut für Angewandte Mathematik, Universität Bonn, 53115 Bonn, Germany

2. DiMaI, Università di Firenze, 50134 Firenze, Italy

3. CNRS and Sorbonne Université, Laboratoire Jacques-Louis Lions, 75005 Paris, France

Abstract

We prove partial regularity for minimizers to elasticity type energies with [Formula: see text]-growth, [Formula: see text], in a geometrically linear framework in dimension [Formula: see text]. Therefore, the energies we consider depend on the symmetrized gradient of the displacement field. It is an open problem in such a setting either to establish full regularity or to provide counterexamples. In particular, we give an estimate on the Hausdorff dimension of the potential singular set by proving that is strictly less than [Formula: see text], and actually [Formula: see text] in the autonomous case (full regularity is well-known in dimension [Formula: see text]). The latter result is instrumental to establish existence for the strong formulation of Griffith type models in brittle fracture with nonlinear constitutive relations, accounting for damage and plasticity in space dimensions [Formula: see text] and [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regularity improvement for the minimizers of the two-dimensional Griffith energy;Rendiconti Lincei - Matematica e Applicazioni;2023-10-06

2. Existence of minimizers for the SDRI model in 2d: Wetting and dewetting regime with mismatch strain;Advances in Calculus of Variations;2023-08-25

3. Optimal incompatible Korn–Maxwell–Sobolev inequalities in all dimensions;Calculus of Variations and Partial Differential Equations;2023-06-29

4. $${\mathscr {A}}$$-quasiconvexity and partial regularity;Calculus of Variations and Partial Differential Equations;2022-10-08

5. Partial regularity for the crack set minimizing the two-dimensional Griffith energy;Journal of the European Mathematical Society;2021-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3