1-Laplacian type problems with strongly singular nonlinearities and gradient terms

Author:

Giachetti Daniela1,Oliva Francescantonio2,Petitta Francesco1

Affiliation:

1. Dipartimento di Scienze di Base e Applicate per l’ Ingegneria, Sapienza Università di Roma, Via Scarpa 16, 00161, Roma, Italy

2. Dipartimento di Matematica e Applicazioni, Università di Napoli “Federico II”, Via Cintia, Monte S. Angelo, 80126, Napoli, Italy

Abstract

We show optimal existence, nonexistence and regularity results for nonnegative solutions to Dirichlet problems as [Formula: see text] where [Formula: see text] is an open bounded subset of [Formula: see text], [Formula: see text] belongs to [Formula: see text], and [Formula: see text] and [Formula: see text] are continuous functions that may blow up at zero. As a noteworthy fact we show how a non-trivial interaction mechanism between the two nonlinearities [Formula: see text] and [Formula: see text] produces remarkable regularizing effects on the solutions. The sharpness of our main results is discussed through the use of appropriate explicit examples.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L1 terms;Journal of Differential Equations;2024-05

2. On Some Weighted 1-Laplacian Problem on $$ {\mathbb {R}}^N $$ with Singular Behavior at the Origin;Bulletin of the Malaysian Mathematical Sciences Society;2023-12-07

3. Dirichlet or Neumann Problem for Weighted 1-Laplace Equation with Application to Image Denoising;The Journal of Geometric Analysis;2023-12-02

4. Existence of bounded solutions for a class of singular elliptic problems involving the 1-Laplacian operator;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-04-28

5. On 1-Laplacian elliptic problems involving a singular term and an $$L^{1}$$-data;Journal of Elliptic and Parabolic Equations;2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3