Affiliation:
1. Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
2. Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
Abstract
We study the global behavior of small solutions of the Gross–Pitaevskii equation in three dimensions. We prove that disturbances from the constant equilibrium with small, localized energy, disperse for large time, according to the linearized equation. Translated to the defocusing nonlinear Schrödinger equation, this implies asymptotic stability of all plane wave solutions for such disturbances. We also prove that every linearized solution with finite energy has a nonlinear solution which is asymptotic to it. The key ingredients are: (1) some quadratic transforms of the solutions, which effectively linearize the nonlinear energy space, (2) a bilinear Fourier multiplier estimate, which allows irregular denominators due to a degenerate non-resonance property of the quadratic interactions, and (3) geometric investigation of the degeneracy in the Fourier space to minimize its influence.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献