Affiliation:
1. Institute of Mathematics and Informatics, Faculty of Science and Mathematics, University of Novi Sad, Trg D.Obradovića 4, 21 000 Novi Sad, Serbia
Abstract
We consider linear Schrödinger equation perturbed by delta distribution with singular potential and the initial data. Due to the singularities appearing in the equation, we introduce two kinds of approximations: the parameter's approximation for potential and the initial data given by mollifiers of different growth and the approximation for the Green function for Schrödinger equation with regularized derivatives. These approximations reduce the perturbed Schrödinger equation to the family of singular integral equations. We prove the existence-uniqueness theorems in Colombeau space [Formula: see text], 1 ≤ p,q ≤ ∞, employing novel stability estimates (w.r.) to singular perturbations for ε → 0, which imply the statements in the framework of Colombeau generalized functions. In particular, we prove the existence-uniqueness result in [Formula: see text] and [Formula: see text] algebra of Colombeau.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献