THE FINITISTIC DIMENSION CONJECTURE AND RELATIVELY PROJECTIVE MODULES

Author:

XI CHANGCHANG1,XU DENGMING2

Affiliation:

1. School of Mathematical Sciences, Capital Normal University, 100048 Beijing, P. R. China

2. Sino-European Institute of Aviation Engineering, Civil Aviation University of China, 300300 Tianjin, P. R. China

Abstract

The famous finitistic dimension conjecture says that every finite-dimensional 𝕂-algebra over a field 𝕂 should have finite finitistic dimension. This conjecture is equivalent to the following statement: If B is a subalgebra of a finite-dimensional 𝕂-algebra A such that the radical of B is a left ideal in A, and if A has finite finitistic dimension, then B has finite finitistic dimension. In the paper, we shall work with a more general setting of Artin algebras. Let B be a subalgebra of an Artin algebra A such that the radical of B is a left ideal in A. (1) If the category of all finitely generated (A, B)-projective A-modules is closed under taking A-syzygies, then fin.dim (B) ≤ fin.dim (A) + fin.dim (BA) + 3, where fin.dim (A) denotes the finitistic dimension of A, and where fin.dim (BA) stands for the supremum of the projective dimensions of those direct summands of BA that have finite projective dimension. (2) If the extension B ⊆ A is n-hereditary for a non-negative integer n, then gl.dim (A) ≤ gl.dim (B) + n. Moreover, we show that the finitistic dimension of the trivially twisted extension of two algebras of finite finitistic dimension is again finite. Also, a new formulation of the finitistic dimension conjecture in terms of relative homological dimension is given. Our approach in this paper is completely different from the one in our earlier papers.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. Queen Mary College Mathematics Notes;Auslander M.,1971

2. Representation Theory of Artin Algebras

3. Finitistic dimension and a homological generalization of semi-primary rings

4. Memoirs of the American Mathematical Society;Beligiannis A.,2007

5. Classes of extensions and resolutions

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relative injective envelopes and relative projective covers on ring extensions;Communications in Algebra;2024-02-06

2. Quotient bifinite extensions and the finitistic dimension conjecture;Proceedings of the American Mathematical Society;2023-11-17

3. Relatively flat modules on ring extensions;Communications in Algebra;2022-05-11

4. Relatively free modules on ring extensions;Communications in Algebra;2021-06-28

5. Finitistic dimension conjecture and extensions of algebras;Communications in Algebra;2019-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3