Affiliation:
1. Department of Mathematical Sciences, University of Houston-Downtown, Houston, TX 77006, USA
Abstract
We study geometric variational problems for a class of nonlinear σ-models in quantum field theory. Mathematically, one needs to minimize an energy functional on homotopy classes of maps from closed 3-manifolds into compact homogeneous spaces G/H. The minimizers are known as Hopfions and exhibit localized knot-like structure. Our main results include proving existence of Hopfions as finite energy Sobolev maps in each (generalized) homotopy class when the target space is a symmetric space. For more general spaces, we obtain a weaker result on existence of minimizers in each 2-homotopy class.Our approach is based on representing maps into G/H by equivalence classes of flat connections. The equivalence is given by gauge symmetry on pullbacks of G → G/H bundles. We work out a gauge calculus for connections under this symmetry, and use it to eliminate non-compactness from the minimization problem by fixing the gauge.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics