Affiliation:
1. Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CMaLP-CONICET, Casilla de Correo 172, 1900 La Plata, Argentina
2. Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
Abstract
In this paper, we study two deformation procedures for quantum groups: deformations by twists, that we call “comultiplication twisting”, as they modify the coalgebra structure, while keeping the algebra one — and deformations by [Formula: see text]-cocycle, that we call “multiplication twisting”, as they deform the algebra structure, but save the coalgebra one. We deal with quantized universal enveloping algebras (in short QUEAs), for which we accordingly consider those arising from twisted deformations (in short TwQUEAs) and those arising from [Formula: see text]-cocycle deformations, usually called multiparameter QUEAs (in short MpQUEAs). Up to technicalities, we show that the two deformation methods are equivalent, in that they eventually provide isomorphic outputs, which are deformations (of either kinds) of the “canonical”, well-known one-parameter QUEA by Jimbo and Lusztig. It follows that the two notions of TwQUEAs and of MpQUEAs — which, in Hopf algebra theoretical terms are naturally dual to each other — actually coincide; thus, that there exists in fact only one type of “pluriparametric deformation” for QUEAs. In particular, the link between the realization of any such QUEA as a MpQUEA and that as a TwQUEA is just a (very simple, and rather explicit) change of presentation.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multiparameter quantum groups at roots of unity;Journal of Noncommutative Geometry;2022-09-12