Complexity and fractal dimensions for infinite sequences with positive entropy

Author:

Mauduit Christian1,Moreira Carlos Gustavo2

Affiliation:

1. Université d’Aix-Marseille et Institut Universitaire de France, Institut de Mathématiques de Marseille, UMR 7373 CNRS, 163, avenue de Luminy, 13288 Marseille Cedex 9, France

2. Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

Abstract

The complexity function of an infinite word [Formula: see text] on a finite alphabet [Formula: see text] is the sequence counting, for each non-negative [Formula: see text], the number of words of length [Formula: see text] on the alphabet [Formula: see text] that are factors of the infinite word [Formula: see text]. The goal of this work is to estimate the number of words of length [Formula: see text] on the alphabet [Formula: see text] that are factors of an infinite word [Formula: see text] with a complexity function bounded by a given function [Formula: see text] with exponential growth and to describe the combinatorial structure of such sets of infinite words. We introduce a real parameter, the word entropy [Formula: see text] associated to a given function [Formula: see text] and we determine the fractal dimensions of sets of infinite sequences with complexity function bounded by [Formula: see text] in terms of its word entropy. We present a combinatorial proof of the fact that [Formula: see text] is equal to the topological entropy of the subshift of infinite words whose complexity is bounded by [Formula: see text] and we give several examples showing that even under strong conditions on [Formula: see text], the word entropy [Formula: see text] can be strictly smaller than the limiting lower exponential growth rate of [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3