On criticality theory for elliptic mixed boundary value problems in divergence form

Author:

Pinchover Yehuda1,Versano Idan1

Affiliation:

1. Department of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel

Abstract

The paper is devoted to the study of positive solutions of a second-order linear elliptic equation in divergence form in a domain [Formula: see text] that satisfy an oblique boundary condition on a portion of [Formula: see text]. First, we study weak solutions for the degenerate mixed boundary value problem [Formula: see text] where [Formula: see text] is a bounded Lipschitz domain, [Formula: see text] is a relatively open portion of [Formula: see text], and [Formula: see text] is an oblique (Robin) boundary operator defined on [Formula: see text] in a weak sense. In particular, we discuss the unique solvability of the above problem, the existence of a principal eigenvalue, and the existence of a minimal positive Green function. Then we establish a criticality theory for positive weak solutions of the operator [Formula: see text] in a general domain [Formula: see text] with no boundary condition on [Formula: see text] and no growth condition at infinity. The paper extends results obtained by Pinchover and Saadon for classical solutions of such a problem, where stronger regularity assumptions on the coefficients of [Formula: see text], and the boundary [Formula: see text] are assumed.

Funder

Israel Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3