Affiliation:
1. Department of Applied Mathematics, HSE University, 34 Tallinskaya Street, 123458 Moscow, Russian Federation
Abstract
An explicit expression for the cofactor related to an irreducible invariant algebraic curve of a polynomial dynamical system in the plane is derived. A sufficient condition for a polynomial dynamical system in the plane to have a finite number of irreducible invariant algebraic curves is obtained. All these results are applied to Liénard dynamical systems [Formula: see text], [Formula: see text] with [Formula: see text]. The general structure of their irreducible invariant algebraic curves and cofactors is found. It is shown that Liénard dynamical systems with [Formula: see text] can have at most two distinct irreducible invariant algebraic curves simultaneously and, consequently, are not integrable with a rational first integral.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献