Affiliation:
1. Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
2. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, P. R. China
Abstract
In this paper we consider the long-time behavior of solutions to nonlinear reaction diffusion equations involving L1 data, [Formula: see text] where Ω is a smooth bounded domain and u0, g ∈ L1(Ω). Using a decomposition technique combined with a bootstrap argument we establish some uniform regularity results on the solutions, by which we prove that the solution semigroup generated by the problem above possesses a global attractor [Formula: see text] in L1(Ω). Moreover, we obtain that the attractor is actually invariant, compact in [Formula: see text], q < max {N/(N-1), (2p-2)/p}, and attracts every bounded subset of L1(Ω) in the norm of [Formula: see text], 1 ≤ r < ∞.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献