Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds

Author:

Alekseevsky Dmitri V.12,Gutt Jan3,Manno Gianni4,Moreno Giovanni5

Affiliation:

1. Institute for Information Transmission Problems, B. Karetny, per. 19, 127051, Moscow, Russia

2. University of Hradec Kralove, Rokitanskeho 62, Hradec, Kralove 50003, Czech Republic

3. INdAM – Dipartimento di Scienze Matematiche “G. L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

4. Dipartimento di Scienze Matematiche “G. L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy

5. Institute of Mathematics, Polish Academy of Sciences, ul. Sniadeckich 8, 00–656 Warsaw, Poland

Abstract

For each simple Lie algebra [Formula: see text] (excluding, for trivial reasons, type [Formula: see text]), we find the lowest possible degree of an invariant second-order PDE over the adjoint variety in [Formula: see text], a homogeneous contact manifold. Here a PDE [Formula: see text] has degree [Formula: see text] if [Formula: see text] is a polynomial of degree [Formula: see text] in the minors of [Formula: see text], with coefficient functions of the contact coordinate [Formula: see text], [Formula: see text], [Formula: see text] (e.g., Monge–Ampère equations have degree 1). For [Formula: see text] of type [Formula: see text] or [Formula: see text], we show that this gives all invariant second-order PDEs. For [Formula: see text] of types [Formula: see text] and [Formula: see text], we provide an explicit formula for the lowest-degree invariant second-order PDEs. For [Formula: see text] of types [Formula: see text] and [Formula: see text], we prove uniqueness of the lowest-degree invariant second-order PDE; we also conjecture that uniqueness holds in type [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The moment map on the space of symplectic 3d Monge-Ampère equations;Advances in Differential Equations;2024-07-01

2. Exceptionally simple super-PDE for F(4);Communications in Contemporary Mathematics;2023-11-17

3. A general method to construct invariant PDEs on homogeneous manifolds;Communications in Contemporary Mathematics;2021-01-07

4. Contact manifolds, Lagrangian Grassmannians and PDEs;Complex Manifolds;2018-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3