Affiliation:
1. School of Mathematical Sciences, Beijing Normal University, 100875 Beijing, P. R. China
Abstract
We treat the exterior Dirichlet problem for a class of fully nonlinear elliptic equations of the form [Formula: see text] with prescribed asymptotic behavior at infinity. The equations of this type had been studied extensively by Caffarelli et al. [The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261–301], Trudinger [On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995) 151–164] and many others, and there had been significant discussions on the solvability of the classical Dirichlet problem via the continuity method, under the assumption that [Formula: see text] is a concave function. In this paper, based on Perron’s method, we establish an exterior existence and uniqueness result for viscosity solutions of the equations, by assuming [Formula: see text] to satisfy certain structure conditions as in [L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985) 261–301; N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995) 151–164] but without requiring the concavity of [Formula: see text]. The equations in our setting may embrace the well-known Monge–Ampère equations, Hessian equations and Hessian quotient equations as special cases.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献