Affiliation:
1. Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Piazza di Porta S. Donato 5, 40126, Bologna, Italy
2. Dipartimento di Matematica “Guido Castelnuovo”, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Roma, Italy
Abstract
In this paper, we deal with the composite plate problem, namely the following optimization eigenvalue problem: [Formula: see text] where [Formula: see text] is a class of admissible densities, [Formula: see text] for Dirichlet boundary conditions and [Formula: see text] for Navier boundary conditions. The associated Euler–Lagrange equation is a fourth-order elliptic PDE governed by the biharmonic operator [Formula: see text]. In the spirit of [S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi, Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes, Comm. Math. Phys. 214 (2000) 315–337], we study qualitative properties of the optimal pairs [Formula: see text]. In particular, we prove existence and regularity and we find the explicit expression of [Formula: see text]. When [Formula: see text] is a ball, we can also prove uniqueness of the optimal pair, as well as positivity of [Formula: see text] and radial symmetry of both [Formula: see text] and [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献