Affiliation:
1. S. N. Bose National Centre For Basic Sciences, JD Block, Salt Lake, Sector-III, Calcutta-700091, India
Abstract
Winds and outflows form in active galaxies and in binary systems which are known to harbour compact objects such as black holes. Matter starting subsonically from a disc must be accelerated very close to the black hole in order to reach a velocity comparable to the velocity of light, which is actually observed. In the absence of magnetic fields, winds forming in inner regions of accretion discs could primarily be accelerated by radiations emitted from this region where centrifugal force is important. We study critical point behaviour of outflows in presence of this radiative acceleration. We show that the momentum deposition term changes the character of the solution drastically depending on the magnitude and the location of the deposition. We discuss the implications of these solutions in detail. Particularly important is the fact that matter were found to be pushed to infinity, even when they were originally bound energetically. We perform numerical simulations by smoothed particle hydrodynamics (SPH), and show that these new solutions are stable.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献