Affiliation:
1. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
Abstract
Space-based instruments provide new and, in some cases, unique opportunities to search for dark matter. In particular, if dark matter comprises sterile neutrinos, the X-ray detection of their decay line is the most promising strategy for discovery. Sterile neutrinos with masses in the keV range could solve several long-standing astrophysical puzzles, from supernova asymmetries and the pulsar kicks to star formation, reionization, and baryogenesis. The best current limits on sterile neutrinos come from Chandra and XMM-Newton. Future advances can be achieved with a high-resolution X-ray spectrometry in space.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献