COVARIANT ANALYSIS OF NEWTONIAN MULTI-FLUID MODELS FOR NEUTRON STARS II: STRESS–ENERGY TENSORS AND VIRIAL THEOREMS

Author:

CARTER BRANDON1,CHAMEL NICOLAS1

Affiliation:

1. Observatoire de Paris, 92195 Meudon, France

Abstract

The 4-dimensionally covariant approach to multiconstituent Newtonian fluid dynamics presented in the preceding paper of this series is developed by construction of the relevant 4-dimensional stress–energy tensor whose conservation in the non-dissipative variational case is shown to be interpretable as a Noether identity of the Milne spacetime structure. The formalism is illustrated by the application to homogeneously expanding cosmological models, for which appropriately generalized local Bernoulli constants are constructed. Another application is to the Iordanski type generalization of the Joukowski formula for the Magnus force on a vortex. Finally, at a global level, a new (formally simpler but more generally applicable) version of the "virial theorem" is obtained for multiconstituent — neutron or other — fluid star models as a special case within an extensive category of formulae whereby the time evolution of variously weighted mass moment integrals is determined by corresponding space integrals of stress tensor components, with the implication that all such stress integrals must vanish for any stationary equilibrium configuration.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3