The Intrinsic Derivative and Centrifugal Forces in General Relativity: I.

Author:

Bini Donato12,Carini Paolo34,Jantzen Robert T.56

Affiliation:

1. Istituto per Applicazioni della Matematica C.N.R., I-80131 Napoli, Italy

2. International Center for Relativistic Astrophysics, University of Rome, I-00185 Roma, Italy

3. GP-B, Hansen Labs, Stanford University, Stanford, CA 94305, USA

4. International Center for Relativistic Astrophysics, University of Rome, I-00185 Roma, Italy

5. Department of Mathematical Sciences, Villanova University, Villanova, PA 19085, USA

6. International Center for Relativistic Astrophysics, University of Rome, I-00185 Roma, Italy

Abstract

Everyday experience with centrifugal forces has always guided thinking on the close relationship between gravitational forces and accelerated systems of reference. Once spatial gravitational forces and accelerations are introduced into general relativity through a splitting of spacetime into space-plus-time associated with a family of test observers, one may further split the local rest space of those observers with respect to the direction of relative motion of a test particle world line in order to define longitudinal and transverse accelerations as well. The intrinsic covariant derivative (induced connection) along such a world line is the appropriate mathematical tool to analyze this problem, and by modifying this operator to correspond to the observer measurements, one understands more clearly the work of Abramowicz et al. who derine an "optical centrifugal force" in static axisymmetric spacetimes and attempt to generalize it and other inertial forces to arbitrary spacetimes. In a companion article the application of this framework to some familiar stationary axisymmetric spacetimes helps give a more intuitive picture of their rotational features including spin precession effects, and puts related work of de Felice and others on circular orbits in black hole spacetimes into a more general context.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3