Affiliation:
1. Physics Department, University College Cork, Cork, Ireland
2. Department of Physics, KTH Royal Institute of Technology and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm, Sweden
Abstract
A major breakthrough in our understanding of gamma-ray bursts (GRB) prompt emission physics occurred in the last few years, with the realization that a thermal component accompanies the over-all nonthermal prompt spectra. This thermal part is important by itself, as it provides direct probe of the physics in the innermost outflow regions. It further has an indirect importance, as a source of seed photons for inverse-Compton scattering, thereby it contributes to the nonthermal part as well. In this short review, we highlight some key recent developments. Observationally, although so far it was clearly identified only in a minority of bursts, there is indirect evidence that a thermal component exists in a very large fraction of GRBs, possibly close to 100%. Theoretically, the existence of a thermal component has a large number of implications as a probe of underlying GRB physics. Some surprising implications include its use as a probe of the jet dynamics, geometry and magnetization.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献