Pathways to relativistic curved momentum spaces: de Sitter case study

Author:

Amelino-Camelia Giovanni12,Gubitosi Giulia12,Palmisano Giovanni12

Affiliation:

1. Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy

2. INFN, Sezione di Roma1, P.le A. Moro 2, 00185 Roma, Italy

Abstract

Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called [Formula: see text]-momentum space, with de Sitter (dS) metric and [Formula: see text]-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi–Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum geometric perspective on the origin of quantum-conditioned curvatures;Classical and Quantum Gravity;2024-09-06

2. Quantum vacuum of spacetime with a fundamental length;Physical Review D;2024-07-12

3. Anti-de Sitter momentum space in 3D and 4D quantum gravity;Classical and Quantum Gravity;2024-03-25

4. Phenomenology of DSR-relativistic in-vacuo dispersion in FLRW spacetime;Journal of Cosmology and Astroparticle Physics;2024-01-01

5. Deformed Relativistic Symmetry Principles;Modified and Quantum Gravity;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3