Affiliation:
1. Dipartimento di Fisica, Università di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy
2. INFN, Sezione di Roma1, P.le A. Moro 2, 00185 Roma, Italy
Abstract
Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called [Formula: see text]-momentum space, with de Sitter (dS) metric and [Formula: see text]-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi–Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献