BRANEWORLD BLACK HOLES IN COSMOLOGY AND ASTROPHYSICS

Author:

MAJUMDAR A. S.1,MUKHERJEE N.1

Affiliation:

1. S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India

Abstract

The braneworld description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude compared to the Planck scale. An interesting consequence of the braneworld scenario is in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations which could represent black holes with properties quite distinct compared to ordinary black holes in 4-dimensions. We discuss certain key features of some braneworld black hole geometries. Such black holes are likely to have diverse cosmological and astrophysical ramifications. The cosmological evolution of primordial braneworld black holes is described highlighting their longevity due to modified evaporation and effective accretion of radiation during the early braneworld high energy era. Observational abundance of various evaporation products of the black holes at different eras impose constraints on their initial mass fraction. Surviving primordial black holes could be candidates of dark matter present in galactic haloes. We discuss gravitational lensing by braneworld black holes. Observables related to the relativistic images of strong field gravitational lensing could in principle be used to distinguish between different braneworld black hole metrics in future observations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Double holography of entangled universes;Journal of High Energy Physics;2024-07-04

2. Time delay in the strong field limit for null and timelike signals and its simple interpretation;The European Physical Journal C;2021-10

3. Perturbative deflection angle, gravitational lensing in the strong field limit and the black hole shadow;The European Physical Journal C;2021-03

4. Gravitational Lensing;Modified Gravity and Cosmology;2021

5. Light bending in a two black hole metric;Classical and Quantum Gravity;2020-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3