Affiliation:
1. Department of Physics, The Ohio State University, Columbus, OH 43210, USA
Abstract
The thermodynamic properties of black holes — temperature, entropy and radiation rates — are usually associated with the presence of a horizon. We argue that any extremely compact object (ECO) must have the same thermodynamic properties. Quantum fields just outside the surface of an ECO have a large negative Casimir energy similar to the Boulware vacuum of black holes. If the thermal radiation emanating from the ECO does not fill the near-surface region at the local Unruh temperature, then we find that no solution of gravity equations is possible. In string theory, black holes microstates are horizonless quantum objects called fuzzballs that are expected to have a surface [Formula: see text] outside [Formula: see text]; thus the information puzzle is resolved while preserving the semiclassical thermodynamics of black holes.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献