Affiliation:
1. Department of Physics, University of California, Davis, CA 95616, USA
Abstract
Black holes behave as thermodynamic systems, and a central task of any quantum theory of gravity is to explain these thermal properties. A statistical-mechanical description of black hole entropy once seemed remote, but today we suffer an embarrassment of riches: despite counting very different states, many inequivalent approaches to quantum gravity obtain identical results. Such "universality" may reflect an underlying two-dimensional conformal symmetry near the horizon, which can be powerful enough to control the thermal characteristics independent of other details of the theory. This picture suggests an elegant description of the relevant degrees of freedom as Goldstone-boson-like excitations arising from symmetry breaking by the conformal anomaly.
Publisher
World Scientific Pub Co Pte Lt
Subject
Space and Planetary Science,Astronomy and Astrophysics,Mathematical Physics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献