Affiliation:
1. Computer Science Department, Technion, Haifa 32000, Israel
Abstract
An interesting protocol for classical teleportation of an unknown classical state was recently suggested by Cohen, and by Gour and Meyer. In that protocol, Bob can sample from a probability distribution [Formula: see text] that is given to Alice, even if Alice has absolutely no knowledge about [Formula: see text]. Pursuing a similar line of thought, we suggest here a limited form of non-locality — "classical non-locality." Our non-locality is the (somewhat limited) classical analogue of the Hughston–Jozsa–Wootters (HJW) quantum non-locality. The HJW non-locality (also known as "quantum remote steering") tells us how, for a given density matrix ρ, Alice can generate any ρ-ensemble on the North Star. This is done using surprisingly few resources — one shared entangled state (prepared in advance), one generalized quantum measurement, and no communication. Similarly, our classical non-locality (which we call "classical remote steering") presents how, for a given probability distribution [Formula: see text], Alice can generate any [Formula: see text]-ensemble on the North Star, using only one correlated state (prepared in advance), one (generalized) classical measurement, and no communication. It is important to clarify that while the classical teleportation and the classical non-locality protocols are probably rather insignificant from a classical information processing point of view, they significantly contribute to our understanding of what exactly is quantum in their well established and highly famous quantum analogues.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献