CHEMOMECHANICAL COUPLING AND STOCHASTIC THERMODYNAMICS OF THE F1-ATPase MOLECULAR MOTOR WITH AN APPLIED EXTERNAL TORQUE

Author:

GERRITSMA E.1,GASPARD P.1

Affiliation:

1. Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium

Abstract

The effects of external torque on the F 1-ATPase rotary molecular motor are studied from the viewpoint of recent advances in stochastic thermodynamics. This motor is modeled in terms of discrete-state and continuous-state stochastic processes. The dependence of the discrete-state description on external torque and friction is obtained by fitting its transition rates to a continuous-angle model based on Newtonian mechanics with Langevin fluctuating forces and reproducing experimental data on this motor. In this approach, the continuous-angle model is coarse-grained into discrete states separated by both mechanical and chemical transitions. The resulting discrete-state model allows us to identify the regime of tight chemomechanical coupling of the F 1 motor and to infer that its chemical and mechanical efficiencies may reach values close to the thermodynamically allowed maxima near the stalling torque. We also show that, under physiological conditions, the F 1 motor is functioning in a highly-nonlinear-response regime, providing a rotation rate a million times faster than would be possible in the linear-response regime of nonequilibrium thermodynamics. Furthermore, the counting statistics of fluctuations can be obtained in the tight-coupling regime thanks to the discrete-state stochastic process and we demonstrate that the so-called fluctuation theorem provides a useful method for measuring the thermodynamic forces driving the motor out of equilibrium.

Publisher

World Scientific Pub Co Pte Lt

Subject

Molecular Biology,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3