A New Noninvasive Method for Determining the Local (True) Wave Speed: Application to Internal Carotid Artery

Author:

Ayadi Asma1,Sahtout Wassila2,Baledent Olivier3

Affiliation:

1. Laboratory of Biophysics and Medical technology, Higher Institute of Medical, Technologies of Tunis, University of Tunis Manar, 9 Street Doctor Zouheïr Safi 1006, Tunisia

2. Laboratory of Biophysics and Medical Technologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Soukra Road km 4.5; BP. 261, 3038 Sfax, Tunisia

3. Department of Imaging and Biophysics, University of Picardie Jules Verne, CHU Amiens 80054, France

Abstract

Local wave speed plays an interesting role in investigating cardiovascular diseases and arterial wall stiffness. The aim of this study was to implement a novel method based on cepstral analysis for noninvasive determination of local wave speed in the carotid artery. To show the precision of the proposed method, we specially focused on the effect of age. In addition, we intended to compare the obtained results to those obtained by the foot-to-foot method. Our method consists in measuring the instantaneous blood velocity in the internal carotid by using phase-contrast magnetic resonance imaging in 20 healthy subjects distributed as follows: 10 young subjects aged between 22 and 41 years, and 10 old subjects aged between 50 and 86 years. The cepstral analysis was used to determine the arrival time of the reflection wave and the wave speed in the carotid artery. A statistical test analysis was conducted in order to establish the relation between the wave speed and the age in the sample under investigation. Our main finding was that there was a high significant difference between the two groups forming the studied sample ([Formula: see text]). In terms of the internal carotid arterial branch, our experimental results were in total agreement with reference values by the invasive method reported in the literature. Moreover, the wave speed detected using our method correlated with that detected using foot-to-foot analysis ([Formula: see text], [Formula: see text]). We can conclude that the new technique described in this paper offers a promising, convenient and efficient method to measure wave speed noninvasively.

Publisher

World Scientific Pub Co Pte Lt

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3