Single-File System with Absorbing Boundary: Tracer Dynamics and First-Passage Properties

Author:

Ryabov Artem1

Affiliation:

1. Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8, Czech Republic

Abstract

In this paper, we review the tagged particle dynamics in a semi-infinite system with an absorbing boundary. The emphasis is on an interplay between the hard-core interparticle interaction and the absorption process. The exact probability density function for the position of a tagged particle is derived by means of probabilistic arguments. First, the initially homogeneous system with constant density of particles is studied. In this setting, the dynamics of the tracer conditioned on nonabsorption becomes subdiffusive, the generalized diffusion coefficient being different from that reported for the system without absorbing boundary. Second, the case when the initial number of particles is finite is discussed. In this case, in the long time limit the tracer diffusion is normal and the hard-core interaction manifests itself through the renormalization of the tracer diffusion coefficient. The Gaussian distribution derived for infinite single-file systems is, in the present semi-infinite setting, replaced by the Rayleigh distribution. [Formula: see text]Special Issue Comments: This article presents results on the dynamics of a tagged particle in open systems, where the number of particles is not conserved in time. This article is related to the Special Issue articles about advanced statistical properties in single file dynamics,1 the calculation of correlations,2 files with force3 and the zig-zag patterns in files.4

Publisher

World Scientific Pub Co Pte Lt

Subject

Molecular Biology,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3