Single-File Transport of Classical Electrons on the Surface of Liquid Helium

Author:

Rees David G.1,Kono Kimitoshi2

Affiliation:

1. NCTU-RIKEN Joint Research Laboratory, Institute of Physics. National Chiao Tung University, Hsinchu 300, Taiwan

2. Low Temperature Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan

Abstract

Electrons trapped on the surface of liquid helium form a model two-dimensional system. Because the electron density is low (~ 109 cm-2) and the Coulomb interaction between the electrons is essentially unscreened, the system can be regarded as a classical analogue of the degenerate Fermi gas. Electrons on helium have therefore long been used to study many-body transport phenomena in two dimensions. Here we review recent experiments investigating the transport of electrons on helium through microscopic constrictions formed in microchannel devices. Two constriction geometries are studied; short saddle-point constrictions and long constrictions in which the length greatly exceeds the width. In both cases, the constriction width can be tuned electrostatically so that the electrons move in single file. As the width of the short constriction is increased, a periodic suppression of the electron current is observed due to pinning for commensurate states of the electron lattice. A related phenomenon is observed for the long constriction whereby the quasi-one-dimensional Wigner lattice exhibits reentrant melting as the number of electron chains increases. Our results demonstrate that electrons on helium are an ideal system in which to study many-body transport in the limit of single-file motion. [Formula: see text] Special Issue Comments: This article presents experimental results on the dynamics of classical electrons moving on the surface of liquid helium in narrow channels with constrictions, with a focus on the "quantum wire", i.e. single file, regime. This article is related to the Special Issue articles about advanced statistical properties in single file dynamics34 and the mathematical results on electron dynamics in liquid helium.35

Publisher

World Scientific Pub Co Pte Lt

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3