Affiliation:
1. Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Cartuja Campus, Granada, 18071, Spain
Abstract
The use of Förster resonance energy transfer (FRET) has undergone a renaissance in the last two decades, especially in the study of structure of biomolecules, biomolecular interactions, and dynamics. Thanks to powerful advances in single-molecule fluorescence (SMF) techniques, seeing molecules at work is a reality, which has helped to build up the mindset of molecular machines. In the last few years, many technical developments have broadened the applications of SMF-FRET, expanding the amount of information that can be recovered from individual molecules. Here, we focus on the non-standard SMF-FRET techniques, such as two-color coincidence detection (TCCD), alternating laser excitation (ALEX), multiparameter fluorescence detection (MFD); the addition of fluorescence lifetime as an orthogonal dimension in single-molecule experiments; or the development of novel and improved methods of analysis constituting to a set of advanced methodologies that may become routine tools in a close future. [Formula: see text]Special Issue Comment: This review about advanced single-molecule FRET techniques is specially related to the review by Jørgensen and Hatzakis,6 who detail experimetal strategies to solve the activity of single enzymes. The advanced techniques described in our paper may serve as interesting alternatives when applied to enzyme studies. Our manuscript is also related to the reviews in this Special Issue that deal with model solving.22,130
Publisher
World Scientific Pub Co Pte Lt
Subject
Molecular Biology,Structural Biology,Biophysics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献