Forecasting the “T” Stage of Esophageal Cancer by Deep Learning Methods: A Pilot Study

Author:

Celik Sebahattin1,Deniz Serpil Sevimli2,Gündüz Ali Mahir3,Çoban Leyla Turgut3,Akman Zehra İlik4,Sohail Ayesha5,Güneş Serhat1,Tajani Barzin6,Kotan M. Çetin1

Affiliation:

1. Department of General Surgery, Van Yuzuncu Yıl University Faculty of Medicine, Van, Turkey

2. Department of Computer Science, Van Yuzuncu Yıl University Vocational School, Van, Turkey

3. Department of Radiology, Van Yuzuncu Yıl University Faculty of Medicine, Van, Turkey

4. Department of Pathology, Van Yuzuncu Yıl University Faculty of Medicine, Van, Turkey

5. School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia

6. Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey

Abstract

Research motivation: Staging esophageal cancer is of paramount importance for treatment. With conventional methods, accuracy of staging is low, we aimed to improve the accuracy of the “T” stage of esophageal cancer by using deep learning techniques. Method/Material: Clinically diagnosed esophageal cancer patients were prospectively observed and their data were collected. jpeg images were collected from the Computed Tomography of patients. 80% of the data were used for training and 20% for tests. Pathology results were used as the gold standard in the training of deep learning algorithms. EfficientNetB7 and ResNet152V2 models were used in the study. Both architectures with convolutional neural networks have Convolutional layers, pool layers, and fully connected layers. Results: A total of 477 images of 50 patients were analyzed. EfficientNetB7 makes predictions with a total of 64,107,931 parameters, and ResNet152V2 58,339,844 parameters within seconds (2[Formula: see text]s) at rates close to the accuracy offered by humans. With the EfficientNetB7 architecture, one of the Convolutional Neural Networks used in this study, 90% accuracy was achieved in the “T” staging of esophageal cancer. Conclusion: Despite the very limited dataset, deep learning algorithms can perform effective and reliable staging under the supervision of an experienced radiologist. With more datasets, the precision of the estimation can increase.

Funder

KOSGEB

Publisher

World Scientific Pub Co Pte Ltd

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3