Affiliation:
1. Institute of Physics, Johannes-Gutenberg University of Mainz, D-55099 Mainz, Germany
Abstract
We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid Lαphase at a quantitative level.However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes (Lβ′phase) show a signature of the modulated ripple structure Pβ′, which is a nearby phase observed in the pretransition regime between the Lαand Lβ′state. This complicates a quantitative analysis on mesoscopic length scales. In the case of fluid membranes under tension, the large-wavelength fluctuation modes are found to be significantly softer than predicted by theory.In the latter context, we also address the general problem of the relation between frame tension and the fluctuation tension, which has been discussed somewhat controversially in recent years. Simulations of very simple model membranes with fixed area show that the fluctuations should be controlled by the frame tension, and not by the internal tension.
Publisher
World Scientific Pub Co Pte Lt
Subject
Molecular Biology,Structural Biology,Biophysics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献