Efficacy of Isolation as a Control Strategy for Ebola Outbreaks in Combination with Vaccination

Author:

Mukhopadhyay Debkusum1,Pal Samares1ORCID

Affiliation:

1. Department of Mathematics, University of Kalyani, Kalyani-741235, India

Abstract

In this research work, we have developed and analyzed a deterministic epidemiological model with a system of nonlinear differential equations for controlling the spread of Ebola virus disease (EVD) in a population with vital dynamics (where birth and death rates are not equal). The model examines the disease transmission dynamics with isolation from exposed and infected human class and effect of vaccination in susceptible human population through stability analysis and bifurcation analysis. The model exhibits two steady state equilibria, namely, disease-free and endemic equilibrium. Next generation matrix method is used to find the expression for [Formula: see text] (the basic reproduction number). Local and global stability of diseases-free equilibrium are shown using nonsingular M-matrix technique and Lyapunov’s theorem, respectively. The existence and local stability of endemic equilibrium are explored under certain conditions. All numerical data entries are supported by various authentic sources. The simulation study is done using MATLAB code 45 which uses Runge–Kutta method of fourth order and we plot the time series and bifurcation diagrams which support our analytical findings. Stability analysis of the model shows that the disease-free equilibrium is locally as well as globally asymptotically stable if [Formula: see text] and endemic equilibrium is locally asymptotically stable in absence of vaccination if [Formula: see text]. Using central manifold theorem, the presence of transcritical bifurcation for a threshold value of the transmission rate parameter [Formula: see text] when [Formula: see text] passes through unity and backward bifurcation (i.e. transcritical bifurcation in opposite direction) for some higher value of [Formula: see text] are established. Our simulation study shows that isolation of exposed and infected individuals can be used as a more effective tool to control the spreading of EVD than only vaccination.

Funder

Department of Science and Technology

Publisher

World Scientific Pub Co Pte Lt

Subject

Molecular Biology,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3