MICRO-PATTERN GASEOUS DETECTOR TECHNOLOGIES AND RD51 COLLABORATION

Author:

TITOV MAXIM1,ROPELEWSKI LESZEK2

Affiliation:

1. CEA Saclay, DSM/IRFU/SPP, 91191 Gif sur Yvette, France

2. CERN PH, CH-1211, Geneva 23, Switzerland

Abstract

Discoveries in particle physics vitally depend on parallel advances in radiation-detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the development of a fully parallel readout for a large array of sensing elements — the Multi-Wire Proportional Chamber (MWPC), which earned Georges Charpak a Nobel Prize in Physics in 1992. This invention revolutionized particle detection which moved from optical-readout devices (cloud chamber, emulsion or bubble chambers) to the electronics era. Over the past two decades advances in photo-lithography, microelectronics and printed-circuit board (PCB) techniques triggered a major transition in the field of gas detectors from wire structures to the Micro-Pattern Gas Detector (MPGD) concepts. The excellent spatial and time resolution, high rate capability, low mass, large active areas, and radiation hardness make them an invaluable tool to confront future detector challenges at the frontiers of research. The design of the new micro-pattern devices appears suitable for industrial production. Novel devices where MPGDs are directly coupled to the CMOS pixel readout serve as an "electronic bubble chamber" allowing to record space points and tracks in 3D. In 2008, the RD51 collaboration at CERN has been established to further advance technological developments of MPGDs and associated electronic-readout systems, for applications in basic and applied research. This review provides an overview of the state-of-the-art of the MPGD technologies and summarizes ongoing activities within the framework of the RD51 collaboration.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3