Affiliation:
1. Physics Department, Ben-Gurion University, Beer-Sheva 84105, Israel
Abstract
Realizations of scale invariance are studied in the context of a gravitational theory where the action (in the first-order formalism) is of the form [Formula: see text] where Φ is a density built out of degrees of freedom, the "measure fields" independent of gμν and matter fields appearing in L1, L2. If L1 contains the curvature, scalar potential V(ϕ) and kinetic term for ϕ, L2 another potential for ϕ, U(ϕ), then the true vacuum state has zero energy density, when theory is analyzed in the conformal Einstein frame (CEF), where the equations assume the Einstein form. Global scale invariance is realized when V(ϕ)=f1eαϕ and U(ϕ)=f2e2αϕ. In the CEF the scalar field potential energy V eff (ϕ) has, in addition to a minimum at zero, a flat region for αϕ→∞, with nonzero vacuum energy, which is suitable for either a new inflationary scenario for the early universe or for a slowly rolling decaying Λ-scenario for the late universe, where the smallness of the vacuum energy can be understood as a kind of seesaw mechanism.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献