THREE-DIMENSIONAL QUANTUM GRAVITY AS DYNAMICAL TRIANGULATION

Author:

AGISHTEIN M. E.1,MIGDAL A. A.2

Affiliation:

1. Program in Applied and Computational Mathematics, Fine Hall, Princeton University, Princeton, NJ 08544–1000, USA

2. Physics Department and Program in Applied and Computational Mathematics, Fine Hall, Princeton University, Princeton, NJ 08544-1000, USA

Abstract

The dynamical triangulation model of 3-dimensional Quantum Gravity is defined and studied. We propose two different algorithms for numerical simulations, leading to consistent results. One is the 3-dimensional generalization of the bonds flip, another is more sophisticated algorithm, based on Schwinger–Dyson equations. We found such care necessary, because our results appear to be quite unexpected. We simulated up to 60000 tetrahedra and observed none of the feared pathologies like factorial growth of the partition function with volume, or collapse to the branched polymer phase. The volume of the Universe grows exponentially when the bare cosmological constant λ approaches the critical value λ c from above, but the closed Universe exists and has peculiar continuum limit. The Universe compressibility diverges as (λ − λ c )−2 and the bare Newton constant linearly approaches negative critical value as λ goes to λ c , provided the average curvature is kept at zero. The fractal properties turned out to be the same, as in two dimensions, namely the effective Hausdorff dimension grows logarithmically with the size of the test geodesic sphere.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lessons from the Mathematics of Two-Dimensional Euclidean Quantum Gravity;Handbook of Quantum Gravity;2023

2. Scalar fields in causal dynamical triangulations;Classical and Quantum Gravity;2021-09-16

3. Towards an UV fixed point in CDT gravity;Journal of High Energy Physics;2019-07

4. Characteristics of the new phase in CDT;The European Physical Journal C;2017-03

5. Impact of topology in causal dynamical triangulations quantum gravity;Physical Review D;2016-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3