INTERFRAME CODING OF CANONICAL PATCHES FOR LOW BIT-RATE MOBILE AUGMENTED REALITY

Author:

MAKAR MINA1,TSAI SAM S.1,CHANDRASEKHAR VIJAY1,CHEN DAVID1,GIROD BERND1

Affiliation:

1. Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

Abstract

Local features are widely used for content-based image retrieval and augmented reality applications. Typically, feature descriptors are calculated from the gradients of a canonical patch around a repeatable keypoint in the image. In this paper, we propose a temporally coherent keypoint detector and design efficient interframe predictive coding techniques for canonical patches and keypoint locations. In the proposed system, we strive to transmit each patch with as few bits as possible by simply modifying a previously transmitted patch. This enables server-based mobile augmented reality where a continuous stream of salient information, sufficient for image-based retrieval and localization, can be sent over a wireless link at a low bit-rate. Experimental results show that our technique achieves a similar image matching performance at 1/15 of the bit-rate when compared to detecting keypoints independently frame-by-frame and allows performing streaming mobile augmented reality at low bit-rates of about 20–50 kbps, practical for today's wireless links.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Part-based tracking for object pose estimation;Journal of Real-Time Image Processing;2023-08-22

2. The Promise and Challenges of Computation Deduplication and Reuse at the Network Edge;IEEE Wireless Communications;2022-12

3. Reservoir: Named Data for Pervasive Computation Reuse at the Network Edge;2022 IEEE International Conference on Pervasive Computing and Communications (PerCom);2022-03-21

4. Joint Coding of Local and Global Deep Features in Videos for Visual Search;IEEE Transactions on Image Processing;2020

5. The impression of virtual experience;Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services;2019-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3