AN INTRODUCTION TO LOGICAL ENTROPY AND ITS RELATION TO SHANNON ENTROPY

Author:

ELLERMAN DAVID1

Affiliation:

1. Philosophy Department, University of California, Riverside, CA 92507, USA

Abstract

The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set — just as the usual logical notion of probability based on the Boolean logic of subsets is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional entropy, and mutual information) arise in the usual way from the measure (e.g. the inclusion-exclusion principle) — just like the corresponding notions of probability. The usual Shannon entropy of a partition is developed by replacing the normalized count of distinctions (dits) by the average number of binary partitions (bits) necessary to make all the distinctions of the partition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Linguistics and Language,Information Systems,Software

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of internal evaluation criteria in hierarchical clustering of categorical data;Advances in Data Analysis and Classification;2024-04-13

2. Entropy Analysis of Hierarchical Routing in Heterogeneous Wireless Sensor Network;2023 IEEE 5th Eurasia Conference on IOT, Communication and Engineering (ECICE);2023-10-27

3. Entropies and Dynamical Systems in Riesz MV-algebras;International Journal of Theoretical Physics;2023-05-31

4. Logical entropy and aggregation of fuzzy orthopartitions;Fuzzy Sets and Systems;2023-03

5. Analysis of information measures using generalized type-Ⅰ hybrid censored data;AIMS Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3