Affiliation:
1. Université Paris 5, UFR de mathématiques et d'informatique, C.R.I.P.5, 45, rue des Saints-Pères 75270 Paris Cedex 06, France
Abstract
Recently, the Monte Carlo approach has been applied to computer go with promising success. INDIGO uses such an approach which can be enhanced with specific heuristics. This paper assesses two heuristics within the 19 × 19 Monte Carlo go framework of INDIGO: the territory heuristic and the history heuristic, both in their internal and external versions. The external territory heuristic is more effective, leading to a 40-point improvement on 19 × 19 boards. The external history heuristic brings about a 10-point improvement. The internal territory heuristic yields a few points improvement, and the internal history heuristic has already been assessed on 19 × 19 boards in previous publications. Most of these heuristics were used by INDIGO at the 2004 Computer Olympiad.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献