Adaptive Control of Dominance Area of Solutions in Evolutionary Many-Objective Optimization

Author:

Tomita Kouhei1,Miyakawa Minami1,Sato Hiroyuki1

Affiliation:

1. Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Abstract

Controlling the dominance area of solutions (CDAS) relaxes the concept of Pareto dominance with an user-defined parameter S. CDAS with S < 0.5 expands the dominance area and improves the search performance of multi-objective evolutionary algorithms (MOEAs) especially in many-objective optimization problems (MaOPs) by enhancing convergence of solutions toward the optimal Pareto front. However, there is a problem that CDAS with an expanded dominance area (S < 0.5) generally cannot approximate entire Pareto front. To overcome this problem we propose an adaptive CDAS (A-CDAS) that adaptively controls the dominance area of solutions during the solutions search. Our method improves the search performance in MaOPs by approximating the entire Pareto front while keeping high convergence. In early generations, A-CDAS tries to converge solutions toward the optimal Pareto front by using an expanded dominance area with S < 0.5. When we detect convergence of solutions, we gradually increase S and contract the dominance area of solutions to obtain Pareto optimal solutions (POS) covering the entire optimal Pareto front. We verify the effectiveness and the search performance of the proposed A-CDAS on concave and convex DTLZ3 benchmark problems with 2–8 objectives, and show that the proposed A-CDAS achieves higher search performance than conventional non-dominated sorting genetic algorithm II (NSGA-II) and CDAS with an expanded dominance area.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3