BREAST ULTRASOUND IMAGE SEGMENTATION BASED ON PARTICLE SWARM OPTIMIZATION AND THE CHARACTERISTICS OF BREAST TISSUE

Author:

GUO YANHUI1,CHENG H. D.12,ZHANG YINGTAO2

Affiliation:

1. Department of Computer Science, Utah State University, Logan, UT 84322, USA

2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

Abstract

Breast cancer occurs in over 8% of women during their lifetime, and is the leading cause of death among women. Sonography is superior to mammography because it has the ability to detect focal abnormalities in the dense breasts and has no side-effect. In this paper, we propose a novel automatic segmentation algorithm based on the characteristics of breast tissue and eliminating particle swarm optimization (EPSO) clustering analysis. The characteristics of mammary gland in breast ultrasound (BUS) images are analyzed and utilized, and a method based on step-down threshold technique is employed to locate the mammary gland area. The EPSO clustering algorithm utilizes the idea of "survival of the superior and weeding out the inferior". The experimental results demonstrate that the proposed approach can segment BUS image with high accuracy and low computational time. The EPSO clustering method reduces the computational time by 32.75% compared with the standard PSO clustering algorithm. The proposed approach would find wide applications in automatic lesion classification and computer aided diagnosis (CAD) systems of breast cancer.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3