Evolution of Region Connection Calculus to VRCC-3D+

Author:

Sabharwal Chaman L.1,Leopold Jennifer L.1

Affiliation:

1. Computer Science Department, Missouri University of S&T, Rolla, MO 65409, USA

Abstract

Qualitative spatial reasoning (QSR) is useful for deriving logical inferences when quantitative spatial information is not available. QSR theories have applications in areas such as geographic information systems, spatial databases, robotics, and cognitive sciences. The existing QSR theories have been applied primarily to 2D. The ability to perform QSR over a collection of 3D objects is desirable in many problem domains. Here we present the evolution (VRCC-3D+) of RCC-based QSR from 2D to both 3D (including occlusion support) and 4D (a temporal component). It is time consuming to construct large composition tables manually. We give a divide-and-conquer algorithm to construct a comprehensive composition table from smaller constituent tables (which can be easily handcrafted). In addition to the logical consistency entailment checking that is required for such a system, clearly there is a need for a spatio-temporal component to account for spatial movements and path consistency (i.e. to consider only smooth transitions in spatial movements over time). Visually, these smooth movement phenomena are represented as a conceptual neighborhood graph. We believe that the methods presented herein to detect consistency, refine uncertainty, and enhance reasoning about 3D objects will provide useful guidelines for other studies in automated spatial reasoning.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid qualification of mereotopological relationships using signed distance fields;Encyclopedia with Semantic Computing and Robotic Intelligence;2018-06

2. A Survey of Qualitative Spatial and Temporal Calculi;ACM Computing Surveys;2018-01-31

3. Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields;2018 Second IEEE International Conference on Robotic Computing (IRC);2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3