CLASSIFICATION OF SODAR DATA BY DNA COMPUTING

Author:

RAY KUMAR S.1,MONDAL MANDRITA1

Affiliation:

1. Electronics and Communication Sciences Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata - 700108, India

Abstract

In this paper, we propose a wet lab algorithm for classification of SODAR data by DNA computing. The concept of DNA computing is essentially exploited to generate the classifier algorithm in the wet lab. The classifier is based on a new concept of similarity-based fuzzy reasoning suitable for wet lab implementation. This new concept of similarity-based fuzzy reasoning is different from conventional approach to fuzzy reasoning based on similarity measure and also replaces the logical aspect of classical fuzzy reasoning by DNA chemistry. Thus, we add a new dimension to the existing forms of fuzzy reasoning by bringing it down to nanoscale. We exploit the concept of massive parallelism of DNA computing by designing this new classifier in the wet lab. This newly designed classifier is very much generalized in nature and apart from SODAR data, this methodology can be applied to other types of data also. To achieve our goal we first fuzzify the given SODAR data in a form of synthetic DNA sequence which is called fuzzy DNA and which handles the vague concept of human reasoning. In the present approach, we can avoid the tedious choice of a suitable implication operator (for a particular operation) necessary for the classical approach to fuzzy reasoning based on fuzzy logic. We adopt the basic notion of DNA computing based on standard DNA operations. We consider double stranded DNA sequences, whereas, most of the existing models of DNA computation are based on single stranded DNA sequences. In the present model, we consider double stranded DNA sequences with a specific aim of measuring similarity between two DNA sequences. Such similarity measure is essential for designing the classifier in the wet lab. Note that, we have developed a completely new measure of similarity based on base pair difference which is absolutely different from the existing measure of similarity and which is very much suitable for expert system approach to classifier design, using DNA computing. In the present model of DNA computing, the end result of the wet lab algorithm produces multi valued status which can be linguistically interpreted to match the perception of an expert.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

Reference18 articles.

1. Molecular Computation of Solutions to Combinatorial Problems

2. M. Mizumoto, Management Decision Support Systems Using Fuzzy Sets and Possibility Theory, eds. J. Kacprzyk and R. R. Yager (Verlag TUV Rheinland, W. Germany, 1985) pp. 229–239.

3. DNA Solution of Hard Computational Problems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wafer defect recognition method based on multi-scale feature fusion;Frontiers in Neuroscience;2023-06-02

2. Artificial Neural Networks in DNA Computing and Implementation of DNA Logic Gates;Handbook of Intelligent Computing and Optimization for Sustainable Development;2022-02-11

3. DNA Computing;Applications of Nature-Inspired Computing in Renewable Energy Systems;2022

4. Prediction of Visibility Under Radiation Fog by DNA Computing;New Mathematics and Natural Computation;2020-07

5. Logical Inference by DNA Strand Algebra;New Mathematics and Natural Computation;2016-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3