Fuzzy Stochastic Timed Petri Nets for Causal Properties Representation

Author:

Sobrino Alejandro1,Garrido-Merchán Eduardo C.2,Puente Cristina3

Affiliation:

1. Universidad Santiago de Compostela, Galicia, Spain

2. Universidad Autónoma de Madrid, Madrid, Spain

3. Universidad Pontificia de Comillas, Madrid, Spain

Abstract

Imagery is frequently used to model, represent and communicate knowledge. In particular, graphs are one of the most powerful tools, being able to represent relations between objects. Causal relations are frequently represented by directed graphs, with nodes denoting causes and links denoting causal influence. A causal graph is a skeletal picture, showing causal associations and impact between entities. Common methods used for graphically representing causal scenarios are neurons, truth tables, causal Bayesian networks, cognitive maps and Petri Nets (PNs). Causality is often defined in terms of precedence (the cause precedes the effect), concurrency (often, an effect is provoked simultaneously by two or more causes), circularity (a cause provokes the effect and the effect reinforces the cause) and imprecision (the presence of the cause favors the effect, but not necessarily causes it). We will show that even though the traditional graphical models are able to represent separately some of the properties aforementioned, they fail trying to illustrate indistinctly all of them. To approach that gap, we will introduce Fuzzy Stochastic Timed PNs as a graphical tool able to represent time, co-occurrence, looping and imprecision in causal flow.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Science Applications,Human-Computer Interaction

Reference37 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPNs for Knowledge Representation and Reasoning: A Literature Review;Fuzzy Petri Nets for Knowledge Representation, Acquisition and Reasoning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3