PIN–PMN–PT piezoelectric crystals with increased rhombohedral-to-tetragonal phase transition temperature

Author:

Luo Jun1,Zhang Shujun2,Hackenberger Wesley1,Shrout Thomas R.2

Affiliation:

1. TRS Technologies, Inc, 2820 East College Avenue, State College, PA 16801, USA

2. Material Research Institute, Pennsylvania State University, University Park, PA 16802, USA

Abstract

In this work, crystal growth and characterization of PIN–PMN–PT (29–59% PIN and 28–35% PT) were conducted to understand how PIN ratio in the PIN–PMN–PT system impacts its phase stability during crystallization. High-quality PIN–PMN–PT crystals with 36% PIN were obtained using the self-seeded Bridgman process, even though the cubic phase In 2 O 3 formed at the very beginning of solidification. The melt became more unstable when the PIN ratio in the PIN–PMN–PT system increased to 49% and above, which affected the composition and quality of the as-grown crystals significantly. By increasing the PIN to 36% in PIN–PMN–PT crystal, the rhombohedral-to-tetragonal phase transition temperatures and the coercive field reached 115–135°C and 4.5~5.6 kV/cm, respectively, that greatly expanded the operation domains compared to PMN–PT crystals.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3