Frequency-dependent scaling behavior of polyvinylidene fluoride/metal composites

Author:

Panda Maheswar1ORCID

Affiliation:

1. Department of Physics, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, India

Abstract

The frequency-dependent percolation and scaling behavior of a variety of polymer/metal composites (PMC), based on polyvinylidene fluoride (PVDF) matrix and various types of fillers such as; metal/alloy particles of different sizes, prepared through cold/hot pressing process conditions have undergone investigation. The universal percolation behavior in the vicinity of percolation threshold ([Formula: see text]), i.e., [Formula: see text] and [Formula: see text] is well satisfied, which suggests [Formula: see text] to be independent of frequency, where [Formula: see text] and [Formula: see text] are the effective ac conductivity and effective dielectric constants of the composite and [Formula: see text] is the frequency of applied ac signal. The obtained experimental values of the exponents are consistent with the inter-cluster polarization model ([Formula: see text] and [Formula: see text]), satisfying [Formula: see text]. The widely used percolative equations are well fitted with the experimental results of all PMC at all values of the frequency. The value of [Formula: see text] is found to be independent of frequency of the applied signal, suggesting the studied PMC are real percolating systems. The critical exponents ([Formula: see text] and [Formula: see text]) which characterize the divergence of [Formula: see text] and [Formula: see text] in the vicinity of [Formula: see text] are found to decrease with the increase of frequency. The rate of decrease of ‘[Formula: see text]’ and ‘[Formula: see text]’ with increase of frequency is attributed to the method of preparation, size of the fillers, adhesiveness of polymer/filler and the rate of decrease of [Formula: see text] with frequency (due to the absence of different extents of contributions of various types of conventional polarizations).

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3