Up-conversion luminescence of Er3+ and Yb3+ co-doped CaBi2Ta2O9 multifunctional ferroelectrics

Author:

Cao Qiufeng1,Peng Dengfeng1,Zou Hua1,Li Jun1,Wang Xusheng1,Yao Xi1

Affiliation:

1. Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China

Abstract

Er 3+ and Yb 3+ co-doped CaBi 2 Ta 2 O 9 (CBT)-based bismuth layered-structure oxides were synthesized by a simple solid-state reaction method. Their up-conversion (UC) luminescence, dielectric and ferroelectric properties were investigated. Two strong green emission bands centered at 526 and 547 nm and a weak red emission band centered at 658 nm were obtained under a 980 nm laser excitation at room temperature. These emission bands originated from the radiative relaxation of Er 3+ from 2 H 11/2, 4 S 3/2, and 4 F 9/2 levels to the ground state 4 I 15/2, respectively. At the meantime, the fluorescence intensity ratio (FIR) variation of two green UC emissions at 526 and 547 nm has been studied as a function of temperature in the range of 153–603 K. The maximum sensor sensitivity obtained was 39 × 10-4 K-1 at 590 K, which indicated that Er 3+/ Yb 3+ co-doped CBT ceramic is a promising candidate for applications in optical high temperature sensor.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3