RANDOM FIELDS IN RELAXOR FERROELECTRICS — A JUBILEE REVIEW

Author:

KLEEMANN WOLFGANG1

Affiliation:

1. Angewandte Physik, Universität Duisburg-Essen, D-47048 Duisburg, Germany

Abstract

Substitutional charge disorder as in PbMg1/3Nb2/3O3 , structural cation vacancies as in Sr x Ba 1-x Nb 2 O 6 and isovalent substitution of off-centered cations as in BaTi 1-x Sn x O 3 and BaTi 1-x Zr x O 3 give rise to quenched electric random-fields (RF s ), which we proposed to be at the origin of the peculiar behavior of relaxor ferroelectrics 20 years ago. These are, e.g. a strong frequency dispersion of the dielectric response and an apparent lack of macroscopic symmetry breaking in the low temperature phase. Both are related to mesoscopic RF-driven phase transitions, which give rise to irregularly shaped quasi-stable polar nanoregions below the characteristic temperature T*, but above the global transition temperature Tc. Their co-existence with the paraelectric parent phase can be modeled by time-dependent field equations under the control of quenched RF s and stress-free strain (in the case of order parameter dimension n ≥ 2). Transitions into global polar order at Tc may occur in uniaxial relaxors as observed on the uniaxial relaxor ferroelectric Sr0.8Ba0.2Nb2O6 and come close to RF Ising model criticality. Re-entrant relaxor transitions as observed in solid solutions of Ba2Pr0.6Nd0.4(FeNb4)O15 are proposed to evidence the coexistence of distinct normal and relaxor ferroelectric phases within the framework of percolation theory.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3