Ionic conductivity and relaxation studies in PVDF-HFP:PMMA-based gel polymer blend electrolyte with LiClO4 salt

Author:

Gohel Khushbu1,Kanchan D. K.1

Affiliation:

1. Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India

Abstract

Poly(vinylidene fluoride-hexafluropropylene) (PVDF-HFP) and poly(methyl methacrylate) (PMMA)-based gel polymer electrolytes (GPEs) comprising propylene carbonate and diethyl carbonate mixed plasticizer with variation of lithium perchlorate (LiClO4) salt concentrations have been prepared using a solvent casting technique. Structural characterization has been carried out using XRD wherein diffraction pattern reveals the amorphous nature of sample up to 7.5[Formula: see text]wt.% salt and complexation of polymers and salt have been studied by FTIR analysis. Surface morphology of the samples has been studied using scanning electron microscope. Electrochemical impedance spectroscopy in the temperature range 303–363[Formula: see text]K has been carried out for electrical conductivity. The maximum room temperature conductivity of 2.83[Formula: see text][Formula: see text]S cm[Formula: see text] has been observed for the GPE incorporating 7.5[Formula: see text]wt.% LiClO4. The temperature dependence of ionic conductivity obeys the Arrhenius relation. The increase in ionic conductivity with change in temperatures and salt content is observed. Transport number measurement is carried out by Wagner’s DC polarization method. Loss tangent (tan [Formula: see text]) and imaginary part of modulus ([Formula: see text]) corresponding to dielectric relaxation and conductivity relaxation respectively show faster relaxation process with increasing salt content up to optimum value of 7.5[Formula: see text]wt.% LiClO4. The modulus ([Formula: see text]) shows that the conductivity relaxation is of non-Debye type (broader than Debye peak).

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3