β-Pentagalloyl-Glucose Sabotages Pancreatic Cancer Cells and Ameliorates Cachexia in Tumor-Bearing Mice

Author:

Yang Jing12,Wang Feng2,Chen Xijuan12,Qiu Shuai12,Cui Lihua2,Hu Lijuan2

Affiliation:

1. The Graduate School, Tianjin Medical University, Tianjin 300070, P. R. China

2. The Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin 300100, P. R. China

Abstract

Pancreatic cancer cells overexpress the insulin receptor (IR) and the insulin-like growth factor-1 receptor (IGF1R). Activating these receptors, insulin and insulin-like growth factor-1 increase the growth and glycolysis of pancreatic cancer cells. The high glycolysis in pancreatic cancer cells increases whole-body energy expenditure and is therefore involved in the pathogenesis of cancer cachexia. The antagonism of IR and IGF1R may sabotage pancreatic cancer cells and attenuate cancer cachexia. Previous studies have shown that the intracellular regulating system of IR/IGF1R may be functionally interrelated to another intracellular system whose master regulator is hypoxia-inducible factor-1 (HIF-1). In this study, we investigated how the IR/IGF1R and HIF-1 systems are interrelated in pancreatic cancer cells. We also investigated whether a phytochemical, penta-O-galloyl-[Formula: see text]-D-glucose ([Formula: see text]-PGG), antagonizes IR/IGF1R, sabotages pancreatic cancer cells and alleviates cancer cachexia. We found in MiaPaCa2 pancreatic cancer cells that IR/IGF1R activation increased both the [Formula: see text]-subunit of HIF-1 and caveolin-1. This result suggests that IR/IGF1R, HIF-1[Formula: see text], and caveolin-1 may constitute a feed-forward loop to mediate the effect of IR/IGF1R activation. [Formula: see text]-PGG inhibited IR/IGF1R activity and decreased glycolytic enzymes in MiaPaCa2 and Panc-1 pancreatic cancer cells. When MiaPaCa2 cells were transplanted in athymic mice, their growth was inhibited by [Formula: see text]-PGG or by a HIF-1[Formula: see text] inhibitor, rhein. [Formula: see text]-PGG and rhein also decreased glycolytic enzymes in the tumor grafts and reduced liver gluconeogenesis, skeletal-muscle proteolysis and fat lipolysis in the tumor carriers. Cancer-induced body-weight loss, however, was prevented by [Formula: see text]-PGG but not rhein. In conclusion, [Formula: see text]-PGG combats pancreatic cancer cells and cures cancer cachexia.

Publisher

World Scientific Pub Co Pte Lt

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3